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A prediction algorithm of the binding affinity of ligands to trypanothione reductase (TR), the
enzyme replacing glutathione reductase in the metabolism of trypanosomatidae, has been used
for the “virtual screening” of a data base of 2500 molecular sketches and has detected several
structures of putative TR ligands. Most of these compounds turned out to be micromolar
inhibitors of TR, as predicted by the algorithm. While their inhibitory potencies are lower
than those of previously reported compounds, one of the molecules reported here could represent
the lead toward a structurally different class of TR inhibitors. The fully automated prediction
algorithm converts the 2D molecular sketches into 3D ligand structures, explores the
conformational space of the latter, and performs a grid-based, rigid-body docking of the resulting
family of ligand conformations into the TR site, calculating enthalpic and entropic binding
indexes and predicting the binding affinity. The docking model has also been used to obtain
hints about the binding modes of TR ligands.

I. Introduction

The enzyme trypanothione reductase (TR) appears to
be one of the most promising targets for trypanocidal
drugs.1,2 TR, the parasitic homologue of glutathione
reductase (GR), is involved in the regulation of oxidative
stress in the parasite cells. Both TR and GR are
homodimeric FAD-dependent reductases.3 It is gener-
ally considered4-10 that the mutual selectivity of these
enzymes toward their own substrates (trypanothione
TS2 and respectively glutathione GSSG) is based upon
differences in the electrostatic and hydrophobic proper-
ties of their sites. Some basic residues of the GR site
are replaced by acidic or hydrophobic residues in TR.10
This has been exploited in order to design specific TR
inhibitors, such as mimics of the natural substrate11 or
molecules containing an aromatic moiety linked to a
(poly)amino chain by means of a hydrophobic spacer.12

Molecular modeling is a valuable tool in drug design.
The low accuracy pharmacophore approaches are suit-
able for “virtual screening” of molecular data bases13-15

due to their low computational cost. De novo ligand
design techniques are used to generate structures that
match a given pharmacophore pattern.16-19 quantita-
tive structure-activity relations (QSAR)20-26 relate the
activities of a series of known ligands to some calculable
molecular properties. Ligand binding can be quantita-
tively described by simulating the enzyme-ligand-
solvent complex. If the system has visited all of the
major energy minima27,28 during the simulation, statis-
tical mechanics29 can be used to calculate its thermo-
dynamic properties. Free energy calculations by ther-
modynamic integration30,31 or perturbation techniques30,32
have been used to determine the relative binding energy
differences upon a slight change in the structure of the
ligand or the site. The use of a grid description33,34 of
the different potentials within the enzymatic site dra-
matically diminishes the computer cost of the docking
calculations.

In this work, we report an original computational
approach to predict the TR inhibitory potency of mol-
ecules in order to detect new putative inhibitors by
virtual screening of molecular data bases. It consists
in defining a set of simplified “virtual physical laws”
supposed to govern the behavior of both the free and
the bound ligands, so that binding can be characterized
by means of the calculated “virtual” enthalpy and
entropy indexes. A compromise must be reached be-
tween the computational effort and the degree of realism
of this set of rules in order to make the method suitable
for screening a large number of putative ligands. The
binding indexes must not necessarily correspond to the
real enthalpy and entropy as far as they can be used as
explaining variables of the affinity, as in a QSAR
approach.
The TR enzymatic system displays some peculiarities

that were taken into account in our affinity model. The
flexibility of most of the TR inhibitors11,12 makes man-
datory the use of conformational analysis techniques.
For the same reason, the binding entropy contributions
are expected to be important. Furthermore, the X-ray
structures of both complexes of the TR11 and GR7,8 active
sites witness a lot of weak and water-mediated site-
substrate interactions. The few changes35 in the posi-
tions of the side chains of the free10 and complexed11
TR sites suggests that a rigid site modelmight be a valid
working hypothesis. Accordingly, a rigid-body docking
procedure based upon a grid description of the site
potentials has been adopted in this work. The ligand
flexibility is accounted for without losing the simplicity
of the rigid-body docking, by docking a relevant family
of rigid conformations of the ligand.36

The adjustable parameters appearing in the model
were evaluated by fitting the calculated to the experi-
mental affinities of ligands.12,35,37-43 As a test, the
model has been used to predict the affinities of a
different series of known ligands (Figure 1, Table 1).
Finally, it has been applied to the search of new
inhibitors and the affinities of molecules predicted to
have a favourable binding free energy have been sub-
mitted to TR inhibition tests.
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II. Methods
1. Automated Generation of 3D Structures of Ligands.

i. General Overview of ExistingMethods. The prediction
of the geometries of the stable conformers of small molecules
has found a variety of solutions.44,45 Knowledge-based rules
can be used to restrain the considered values of a torsional
angle in a specific chemical context.46 The torsional angle
driving procedures available in commercial modeling pack-
ages47 add torsional constraint terms to the molecular Hamil-
tonian. Conformational sampling by molecular dynamics (MD)
or Monte Carlo (MC) simulations do not offer the guarantee
that all of the relevant minima have been visited. Biased
sampling approaches such as “poling” techniques, which
enhance crossing the energy barriers, show an improved
sampling efficiency.48
ii. Working Hypotheses of the Conformational Search

(“Sampling Axioms”). In our approach, systematic rotations
around the most central torsional axes generate a very large
number of crude geometries, out of which only a subset of
representative geometries, each converging toward a different
energy minimum, are filtered out and subjected to an energy
minimization in vacuum. The selection is based upon the
following rules, entitled the sampling axioms:

(a) Discard the geometries with overlapping nonbonded
atoms.
(b) Discard the geometries that are similar to already

sampled conformers.
(c) Give priority to the geometries with the largest minimal

distance between two nonbonded atoms.
The rationale behind axiom b is to maximize the probability

that two selected geometries will converge toward different
minima. In consequence, a single enantiomer of a chiral
conformation is kept, while the other will be regenerated by a
mirroring operation during the docking (Methods, section 3.ii).
Axiom c is meant to counteract the tendency of the vacuum
minimization to fold the structures over themselves, favoring
more “extended” geometries that may be more populated in
solution.
The main advantage of this approach is that, at the step of

“combinatorial explosion” of all possible rotamers, the energy
calculations are replaced by the fast evaluation of the sampling
criteria. An imposed number of 300-500 most diverse starting
conformations are obtained within minutes.
iii. The energy minimization of the selected confor-

mations is done by the Discover47 program, with the CVFF49,50

force field, using a steepest descent followed by a pseudo-

Figure 1. Generic structures of the molecules used to calibrate and test the docking model. The substituents Ri and the number
of carbons of the hydrophobic spacer are given in Table 1.
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Newton algorithm51 until the maximum derivative reaches 0.1
kcal/Å. Minimum energy conformers differing by less than
0.05 kcal/mol with respect to both the total and the Coulomb
energies are kept only once. The geometries with more than
5 kcal/mol of excess energy with respect to the best minimum
are discarded. For reasons of computational expense, only the
30 most stable conformations are considered for docking.
iv. Modeling of the Protolytic Equilibria in Ligands.

The effective charge distribution of polyamines, a class to
which many TR inhibitors belong, is determined by the
protolytic equilibria52 in solution. Here we report a way to
account for an averaged effect of the protolytic equilibria on
the docking energies.
The equilibrium between an ammonium group and the

uncharged amine can be accounted for by weighting the charge
Q ) +1 by the probability p of finding the group in a
protonated state at pH ) 7 (practically, the charges of all the
atoms of the ammonium charge group need to be rescaled).
The free energy governing the protolytic equilibria in function
of the probabilities of protonation pi can be written as

where hi is the specific protonation enthalpy of the group i
and dij is the distance between the groups. The first term
(-hipi) in (1) expresses the fact that isolated amino groups tend
to accept a proton due to a favorable proton-binding enthalpy
-hi. If the proton-binding affinity were the only driving force
of protonation, the minimum of Gprot should be at pi ) 1. In
reality, pi < 1 due to the mixing entropy terms. These will be
ignored here, since isolated aliphatic amino groups at pH ) 7
are almost completely protonated (mono- and diaromatic
amines were always taken in their unprotonated forms).
If there are several amino groups in the same molecule, the

protonation of one will impede on the proton affinity of the
second, due to an unfavorable Coulomb interaction between
the two positive charges, according to the second term in the
sum (1), where pipj is the fraction of molecules with both
groups i and j in a protonated state.
Considering an average value 〈h〉 instead of hi, Π ) 〈h〉/K

becomes a fittable parameter that controls the protonation
state of the ligands. The pi values corresponding to a minimal
Gprot are obtained by solving the linear system

They may occasionally fall outside the range of (0,1) due to
the neglect of mixing entropy terms, a situation which should
be interpreted as either a total deprotonation or protonation.
In a piperazine group, pn ≈ 0.5...0.6 and d ) 3 Å between the
two nitrogen atoms, which implies Π ≈ 0.2 Å-1.
2. Definition andMapping of the Potentials in the TR

Site. i. Definition of the Grid. A parallellipipedic box of
30 × 40 × 35 Å3 has been defined around the active site of the
TR enzyme, which is available in the Brookhaven Protein Data
Bank.53 The grid spacing was taken 0.5 Å.33

ii. The Enzymatic Site. For reasons of computer ef-
ficiency, nonpolar CHn groups were treated as “united atoms”
and were assigned the parameters of the CVFF nonpolar
carbon potential type.
(a) X-ray Geometries. A first-considered option was to

calculate the potential grids using the X-ray geometries of
either the free10 or the complexed11 TR.
(b) Average Geometries Considering the Movement

of the Side Chains. An alternative approach was to subject
the site to 100 ps of MD simulation in vacuum at 300 K, with
a fixed backbone. Geometries were sampled every picosecond,
and their corresponding potential values at every grid point
were averaged, smoothing out the steep variations of the
potentials near the site atoms, a major source of docking
artifacts.

Table 1. Structures Used for the Calibration and the Testing
of the Docking Model

a Template, molecular template from Figure 1; R1-R5, corre-
sponding substituents; n, length of the spacer chain; ACT, natural
log of the value (in µM) of the inhibition constant; Ref, literature
reference; Set., presence of the molecule in the learning sets of
different calibration trials (see Table 4).

Gprot ) -∑
i

hipi + K∑
i*j

pipj

dij
(1)

1

K

∂Gprot

∂pk
) -Π + ∑

i*k

pi

dik
) 0 (2)
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iii. The mapped potentials are evaluated at each point
P of the grid, in function of its distances diP to the site atoms
i.
(a) The Coulomb and van der Waals potentials were

parameterized according to the CVFF force field:

(b) The continuum solvent model proposed by Gilson
and Honig54 approximates the change of the electrostatic
energy of a charged atom i that approaches a low-dielectric
(εint) atom j of volume vj, which displaces the high-dielectric
(εsol) solvent. Simultaneously, atom i plays the role of displac-
ing atom with respect to the chargeQj of atom j. This approach
(similar to that in ref 32) allows, in contrast to more elaborated
solvent models,55 the definition of two potentials expressing
the desolvation of the ligand by the site and vice versa:

(c) The hydrophobic effect is usually represented as a
term proportional to the surface area that is buried during
the binding.56 The area of an atom i of radius ri buried by the
sphere centered on atom j, of radius rj, is a function of the
intercenter distance dij < ri + rj:

These spheres correspond to “united” CHn atoms, of equal radii
r ) 2.5 Å, so that eq 8 reduces to bjfi ) πr(2r - diP). Ignoring
the multiple overlaps between atoms and setting δ(i) ) 1 if
atom i is a CHn group and 0 otherwise, the definition of the
hydrophobic potential becomes

3. The Energy Functions of the Model and Their
Fittable Parameters: i. Molecular Hamiltonian or 3D
QSAR Descriptors? In contrast with QSAR models based
on empirical 2D or 3D descriptors, the terms used in this work
have a physical foundation. Therefore, the fittable weighting
coefficients that will be introduced in the expression of the
docking energy can be considered either as physical parameters
of uncertain value or as QSAR parameters, meant to account
for the relative importance of the different energy contributions
to the biological activity.25
(a) Electrostatic Term. The Coulombic term using a

distance-dependent57 dielectric constant εeff ) 2r is not a
rigorous description of charge-charge interactions in dielec-
trically heterogeneous media.58 The coefficient ø may be
regarded as a corrective term to be applied to this initial guess
of εeff.
(b) Desolvation. Since the variance of the individual

atomic volumes vi in (6) is not relevant,59 these have been
replaced with an average volume 〈v〉 that can be taken out of
the sum. In (14), we set vi ) 〈v〉 ) 1 and let λ scale up this
average volume to its effective value.

(c) Hydrophobicity. The hydrophobic potential must be
expressed in kcal/mol by multiplication with an appropriate
coefficient η.
(d) Nonbonded Interactions. The repulsive van der

Waals term has been adopted from CVFF without weighting,
its role being to discard the geometries with site-ligand
clashes. A factor ω has been used to scale the attractive term,
as an attempt to compensate for the dispersive interactions
with the solvent, which were neglected in the present work.
The evaluation of the latter potential of mean force is a complex
task,60 but could be implicitly accounted for by continuum
solvent models.33
(d) The protonation model controlled by a fittable coef-

ficient Π has been described previously (section 1.iv, Methods).
In consequence, the site-ligand interaction energy becomes

Each of these terms can be written in function of the defined
potentials

Both the Coulombic and desolvation terms are calculated using
the weighted atomic charges as derived from the protonation
model.
ii. Energy Levels of the Free Ligands. An aposteriori

solvation correction based upon the Gilson-Honig solvent
model must be added to the energies of the ligand geometries
that were minimized in vacuum. In spite of the failure50 of
this solvation potential to reproduce vacuum-to-water transfer
energies, we argue that the model is able to explain the
interconformational variations of the solvation energy. This
hypothesis needs to be checked by comparisons with results
obtained from more elaborate solvation potentials.
Denoting the Coulombic contribution by Ei

c, the desolva-
tion contribution by Ei

d and the sum of all the other intramo-
lecular force field terms by Ei

nc, the intramolecular total
energy Ei

free of a free conformation i becomes

iii. Energy Levels of the Bound Ligands. Docking
Energy. The site-ligand interaction energy in (10) is a
function of the geometry of the docked conformer i, the relative
position r ) (rx, ry, rz) of the mass centers of the two objects
and the three angles R ) (ax,ay,az) defining the rotation of the
ligand with respect to the site. In function of the current
conformation and of the initial positioning of this conformer
in the site, the minimization of ES-L with respect to the 6
degrees of freedom will lead to the closest local minimum,
defining an energy level of the docked ligand.
(a) Initial Positioning of the Ligands in the Site. An

analysis of the TR site was performed in order to design
different starting points from which the ligand will be allowed
to evolve during optimization. These points should
(1) cover the whole accessible site thereby ensuring that

the ligand will explore all the most relevant zones of the site

VCoul(P) ) ∑
i)1

site atoms Qi

4πε0(2diP)diP
(3)

VvdW
rep (P) ) ∑

i)1

site atoms Ai

diP
12

(4)

VvdW
att (P) ) - ∑

i)1

site atoms Bi

diP
6

(5)

Vdesolv
sitflig(P) )

1

8π2
ε0

( 1εint -
1

εsol
) ∑

i)1

site atoms vi

diP
4

(6)

Vdesolv
ligfsit(P) )

1

8π2
ε0

( 1εint -
1

εsol
) ∑

i)1

site atoms Qi
2

diP
4

(7)

bjfi ) πri(ri + rj - dij)(1 +
rj - ri
dij ) (8)

Vhphob(P) ) -πr ∑
i)1

site atoms

δ(i)(2r - diP) (9)

ES-L ) ES-L
rep + ωES-L

att + øES-L
Coul + λES-L

des + ηEhphob
S-L (10)

ES-L
rep ) ∑

i)1

ligand atoms

AiVvdw
rep (i) (11)

ES-L
att ) ∑

i)1

ligand atoms

BiVvdw
att (i) (12)

ES-L
Coul ) ∑

i)1

ligand atoms

QiVCoul(i) (13)

ES-L
des ) ∑

i)1

ligand atoms

Qi
2 Vdes

sitflig(i) + viVdes
ligfsit(i) (14)

ES-L
hphob ) ∑

i)1

ligand atoms

δ(i)Vhphob(i) (15)

Ei
free ) Ei

ne + øEi
c + λEi

d (16)
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and find the optimal binding pocket when starting from at
least one of these different initial positions
(2) be evenly spread across the site, thereby ensuring

their distribution will not bias the relative populations of the
minima, e.g. the ligand will converge more often toward
binding locations in zones that were more densely covered with
starting points.
A grid of 2 Å spacing has been generated around the active

site of the enzyme. The grid points situated 4-7 Å from the
nearest site atom have been considered as potential starting
points. A Monte Carlo algorithm has been used to pick out a
number of NS ) 7 starting points out of these candidates, in
maximizing the distance between the two closest points of the
selected distribution.
(b) The Docking Algorithm. The docking begins by

placing a current conformer with its geometric center in one
of the NS starting points and ensuring a bump-free initial
orientation. A combination of optimization methods (system-
atic rotations, translations, iterative searches, and eventually
a conjugate gradients minimization) is applied, diminishing
the risk of falling upon false minima. This is repeated from
all the other starting points. In consequence, for each con-
formation i ) 1, ..., Nfree, the different optimizations carried
out from each starting point k ) 1, ..., NS will lead to a series
of local energy minima En

dock, where n ) k + (i - 1)NS.
Eventually, the whole procedure is repeated with the mirror
image i′ of the current conformation i in order to retrieve the
enantiomeric geometries that were discarded at the 3D-
building step, providing the energy levels n′ ) NSNfree + k +
(i - 1)NS. The complete set of levels En

dock, n ) 1, ..., Ndock

(Ndock ) 2NSNfree) characterize the bound ligand.

4. The “Binding Indexes”. i. Binding “Enthalpy” and
“Entropy”. While the free and bound energy levels thus
defined do not form canonical ensembles, the equations of
statistical mechanics are nevertheless a plausible choice for a
set of rules to derive some global docking scores from these
conformational score values.
(a) The stability index represents the difference between

the most stable bound state and the most stable free state

(b) The binding enthalpy index can be defined consider-
ing a Boltzmann factor â

(c) The Binding Entropy Index. The binding affinity is
a function of the global entropy difference of the families of
populated conformations in the free and bound states. Rigor-
ous calculations61 of entropy differences are beyond the scope
of this work. We define a T∆S index

only accounting for the entropy related to the number and
Boltzmann weights of the populated states. We assume that
the translational, rotational, and vibrational loss of disorder
upon binding is constant for all the ligands of roughly the same
size.
(d) An Empirical Estimation of Entropy. The ac-

cumulation of many energy levels close to the lowest level of
a system, e.g. the existence of a multitude of populated states,
implies a large entropy. Moreover, these energy levels con-

tribute to the increment of the enthalpy H with respect to the
lowest energy level H*, due to their important Boltzmann
weights. If, as this qualitative reasoning suggests, (H - H*)
and as the TS term defined in (20) would correlate to a certain
degree (a too strong correlation would imply the redundancy
of one of the descriptors!), then (H - H*) might be used as an
alternative measure of the entropy.
5. Calibration of the Docking Model. i. Docking

Parameters. The binding indexes defined in the previous
sectionsthe stability index in (18), binding enthalpy in (19),
and binding entropy in (20)sare functions of the docking
parameters (ω, ø, λ, η, Π). â has been taken 1/RT )1.67 mol/
kcal (T ) 300K).
ii. Affinity Parameters. A linear relation between the

logs of the inhibition constants of the ligands and the previ-
ously defined indexes can be established and statistically
validated if the latter are useful descriptors of the binding
process (Ki denotes the inhibition constant of compound i).

The coefficients (a, b, c, d) will be referred as the affinity
parameters (ideally a ) -c ) 1.67 kcal/mol, b ) 0). While
their optimal values will depend upon the peculiarities of the
docking model, ∆H should in any case have a positive and T∆S
a negative coefficient. According to the hypothesis that ∆H
- ∆H* is an independent variable acting as an entropic
descriptor, ∆H and ∆H* might be simultaneously used in the
regression (21) in spite of their high degree of intercorrelation,
if the obtained predictive power significantly improves with
respect to the relations only in ∆H and T∆S.
iii. Fitting Procedure. A learning set of TR inhibitors

of known affinities (Figure 1, Table 1) has been used to search
for an optimal configuration of the fittable parameters (ω, ø,
λ, η, Π, a, b, c, d) which minimizes the errors between
calculated and measured ln K values.
6. Testing and Using theModel. Other inhibitors (Table

1, Figure 1) of known affinities, not used in the learning set,
have been used for an affinity-prediction exercise in order to
validate the calibration of the model. Eventually, the approach
was applied to a library of 2500 molecules (partly available in
ACD62). The molecules with 200 e Mr e 500, with a calculated
ln K < 3 and ∆H < -20 kcal/mol, were subjected to TR
inhibition tests.
The percentages of inhibition are given as (r0 - rinh)/r0 ×

100, where r0 and rinh are the rates of the enzymatic reduction
of trypanothione disulfide by TR, measured in absence and in
presence of the inhibitor.63 An error of about 10% may affect
the measured percentages of inhibition.

III. Results and Discussions
1. An Estimation of the Accuracy of the Desol-

vation Term. Table 2 reports the linear equations

Table 2. Correlations between the Solvation Energies from
Boundary Element Calculations (EBEM) and the Gilson-Honig
Term (EGH) for the Sets of Conformations of Different
Compounds

compd y′0 λ′ rms r2 rms(λ) r2(λ)

16 -33.9 1.19 0.53 0.64 0.84
14 -30.2 0.69 0.48 0.39 1.02
9 -112.3 2.07 1.11 0.62 1.12 0.61
27 -33.0 1.06 0.57 0.49 0.88
8 -38.3 1.88 0.53 0.68 0.57 0.64
7 -101.1 1.88 1.05 0.65 1.10 0.61
2 -204.6 1.88 0.99 0.85 1.14 0.79
1 -113.8 1.51 1.04 0.79 1.55 0.53
6 -38.3 2.32 0.41 0.70 0.41 0.70
23 -110.7 2.07 0.46 0.91 0.50 0.90
4 -122.9 3.14 0.48 0.96 0.80 0.89
3 -35.64 1.51 0.24 0.86 0.31 0.75
13 -33.63 1.48 0.41 0.55 0.52 0.27a

a Columns 2-4 refer to the unconstrained regression equations
EBEM ) y′0 + λ′EGH, where both the intercept y0 and the RMS are
in kcal/mol. Columns 5 and 6 display the correlation parameters
at an imposed slope λ ) 2.30.

ln Ki ) a∆Hi + b∆Hi* + cT∆Si + d (21)

En
dock ) Ei

free + min
r,R

ES-L(i/i′;k′r,R) (17)

∆H* ) min
n

En
dock - min

i
Ei
free (18)

∆H )

∑
n

En
docke-âEn

dock

∑
n

e-âEn
dock

-

∑
i

Ei
freee-âEi

free

∑
i

e-âEi
free

(19)

T∆S ) ∆H - ∆G ) ∆H +
1

â
ln(∑i e-âEi

dock

∑
j

e-âEj
free) (20)
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relating the solvation energies calculated with a modi-
fied64 boundary element method (BEM) to the corre-
sponding Gilson-Honig desolvation terms of the con-
formers of a given compound. For most of the molecules,
fair to excellent correlations between the two solvation
terms were found. In the two cases where r2 < 0.5, the
solvation energy shows little variance within the con-
sidered family of conformations of that compound.
Considering only the six compounds with r2 > 0.7, we
obtain an average slope 〈λ′〉 of 2.07(0.56. This is in a
very good agreement with the value of λ ) 2.30
independently found by calibrating the model. Scaling
the interconformational Gilson-Honig term differences
by a factor of λ ) 2.30 constitutes a reasonable ap-
proximation for the corresponding interconformational
solvation energy differences. Furthermore, this λ value
is a good estimate for the average atomic volume it was
designed to account for (section 3.i, Methods).
2. The Efficiency of the Conformational Sam-

pling Procedure. We have compared our sampling
approach with a classical conformational analysis based
upon a 100 ps (105 equilibration steps of 1 fs, with
saving of the geometry at every 100th step) of a high-
temperature (1000 K) MD simulation in vacuum.47 For
each compound, an alternative set of crude geometries,
of the same size as the diversity-biased input set
obtained by 2D-to-3D conversion, has been selected, in
order of their increasing potential energy, among the
geometries sampled by the MD trajectory and subjected
to the same minimization procedure (section 1.iii,
Methods).
The computer times needed to carry out the MD

simulations were longer (typically 15-20 min) compared
to the torsional angle driving that completed in 1...2 min
on an Iris Indigo R4000.
In Table 3, we show some typical examples of the

energy differences between the best minima obtained
by our sampling approach with respect to the ones
generated by the MD run, as well as the final number
of accepted conformations. Maximizing the diversity of
the starting geometries leads to both a larger number
of minima and lower energy best minima for most of
the ligands. However, this is a limited success since
MD is a poor conformational sampling method compared
to other approaches.45,46,48
The bias in favor of more extended (and therefore

hopefully better solvated) conformations according to
sampling axiom c (section 1.ii, Methods) appeared to be
successful for compound 8, for which the MD geometry
set led to a better vacuum minimum, while the diver-
sity-

biased set found conformations that are more stable in
solution. In contrast, it did not work for ligands 2 and
7.
3. Calibration Results. i. Averaging of the Side

Chain Geometries of the TR Site. A first important
result is that only the potentials obtained by averaging
over the MD trajectory of the active site led to good
affinity predictions. Averaging would not have been a
good strategy if the movement of site residues would
have been strongly restrained upon complexation with
a ligand. Therefore, our finding corroborates with the
little differences observed between the side chain ge-
ometries of a free and complexed TR site.
ii. Optimal Parameters. Several optimization runs

using different learning sets lead to those coefficients
reported in Table 4 (docking parameters) and Table 5.
(affinity parameters). The calibration set A was re-
stricted to smaller ligands, while sets B and C progres-
sively included larger and more flexible compounds.
(a) The docking parameters do not radically differ

in function of the chosen learning set:
The van der Waals weighting factor ω, which was

fixed to 1 in the run A, did not considerably drift away
after fitting (sets B and C), although the Monte Carlo
search was carried out in the range ω ∈[0,1]. This
suggests that the van der Waals solvation contribution
cannot be implicitly accounted for by weighting the van
der Waals vacuum energies.
The desolvation term has been discussed in detail

in section 1 of the Results section.
The hydrophobic coefficient is somewhat lower, but

falls within the range usually found in the literature.55,59
This is a consequence of the systematic overestimation
of the buried area due to the ignoring of multiple
overlaps.
The Coulombic weighting factor is close to 1, sug-

gesting that the choice of the dielectric constant εeff )
2d was reasonable (the explored range was ø ∈[0.5,1.5]).
The protonation constant Π is the least stable

docking parameter. The reported values correspond to
a fraction of the diprotonated piperazine at pH ) 7 of
about 20% (A), 60% (B), and 30% (C). While the former
and the latter values are in good agreement with the
experiment, case B predicts a quite high rate of dipro-
tonation. This important fluctuation of the total charge
has little influence on the calculated binding indexes
and affinity constants of most of the piperazine-contain-
ing ligands.
The observed tolerance of the model with respect to

roughly 0.3 charge units on a dibasic ligand is probably
due to the compensation between the Coulombic inter-
actions, becoming more favorable, and the desolvation
term, growing more unfavorable upon an increase of the
global charge. Therefore, the quality of the model

Table 3. Efficiency of Our Conformational Sampling
Algorithm Compared to a 100 ps Molecular Dynamics Run at
1000 Ka

compd ∆Emin ∆(Emin + Es) Ninit N NMD

1 -1.10 -1.20 326 33 8
2 -4.77 -2.26 304 19 13
7 -1.13 +0.49 426 39 14
4 +0.12 0.00 36 5 6
8 +2.71 -2.15 300 87 56

a The energy differences are in kcal/mol. ∆Emin is the difference
between the vacuum energies of the best minumum found by our
method and the one obtained by optimization of MD-sampled
geometries. ∆(Emin + Es) is the corresponding difference between
the solvent-corrected energies. Nint represents the number of
initial geometries that were subjected to minimization, while N
and NMD are the number of distinct minima found by our method
and the MD simulation, respectively.

Table 4. Docking Parameters Resulting from Three
Calibration Attempts (Denoted by A, B, and C) Making Use of
Different Learning Sets

model ø η λ ω Π

A 1.23 3.75 2.66 1.00* 0.21
B 1.15 3.94 2.29 0.96 0.27
C 1.15 3.62 2.31 0.96 0.22

a The hydrophobicity parameter η has been expressed in cal/
A2. All other parameters are dimensionless weighting factors. An
asterisk (*) is used to denote a value that has been kept during
this calibration run.
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displays a quite broad, but nevertheless explicit, maxi-
mum within a physically meaningful range of Π values.
(b) The affinity parameters significantly differ in

function of the docking parameter configuration (Table
5). The largest discrepancies appear between the values
obtained with the learning set A and respectively those
of sets B and C, e.g. upon an increase of the diversity of
the learning set. For parameter set A, the best expres-
sion of ln K is in ∆H and T∆S only, while in the other
two cases, ∆H* is also involved.
While the correlation coefficient between∆H and ∆H*

is as high as 0.995, the magnitude ∆H - ∆H* is
completely independent with respect to both ∆H and
∆H* (r2 ≈ 0.2). ∆H - ∆H* does not however, represent
the “noise” due to the imperfect proportionality between
∆H and ∆H* but appears to be a useful descriptor of
the binding affinity (otherwise, the stepwise and cross-
validated regression technique would have not entered
∆H* into the model).
Expressing the T∆S values of the ligands as linear

combinations of ∆H and ∆H* leads to correlations of
fair quality (Table 6, Figure 2) which validate our
hypothesis that ∆H - ∆H* may act as a descriptor of
entropic nature. It is found that T∆S ≈ 1.2...1.4(∆H -
∆H*), independently of the docking parameter set. The
correlation coefficients of 0.5 and 0.6 ensure that T∆S
and ∆H - ∆H* are not redundant variables.
The established regression equations of ln K in

function of only ∆H and T∆S are also reported in Table
5. In this case basically the same linear relation is
obtained independently of the docking parameter set,

where the overall entropic contribution is about -2T∆S,
close to the theoretical -1.67T∆S.
The large discrepancies in the coefficient of ∆H

observed in the best regressions are mainly due to the
very different contributions of ∆H - ∆H*. The overall
enthalpic term amounts to about 0.2∆H, with a positive
coefficient which proves to be much lower than expected.
(c) QSARModel or Physical BindingModel? The

obtained docking coefficients, close to values that can
be backed by various theoretical or computational
arguments, speak for the physical consistency of the
model, while the values of the affinity coefficients
suggest a QSAR-like affinity prediction model.
In spite of the fact that its weighting coefficient equals

only 10% of the theoretical value, the enthalpy index
∆H accounts for roughly 25% of the explained variance,
while T∆S covers the rest (with parameter set A).
Table 7 compares the ∆H and T∆S terms correspond-

ing to each one of the docking parameter sets (A, B, C).
It can be seen that the ∆H values are very well
intercorrelated, while the entropy T∆S displays a
stronger dependence upon the used parameterization.
Nevertheless, the overall contribution of about -2T∆S
suggests that while the T∆S term for any particular
ligand is affected by random errors, in general the
calculated entropies may reflect quite well (up to a
constant offset) the real binding entropies.
While the enthalpy index depends upon the separa-

tion between the bound and the free energy levels, the
entropy index is only a function of the conformational
energy differences within each of the ensembles of the
bound and free states. An error in the substrate-ligand
interaction energy that is roughly independent on the
current ligand conformation (such as the neglect of the
vdW and cavity-formation contributions to the solvation
energy) would therefore mainly affect ∆H, constituting
a first possible explanation for the low participation of
∆H in the model.
Alternatively, this could be explained on behalf of the

enthalpy-entropy compensation as outlined in ref 65.
The less tightly bound ligands (less negative enthalpy
∆H) still maintain a certain mobility in the site and lose
only a fraction T∆Seff of the assumed translational-
rotational entropic contribution, e.g. T∆Seff ) R∆H. This
partial loss of mobility could be implicitly accounted for
by an appropriate weighting of the enthalpic contribu-
tion, since ∆H - T∆Seff ) (1 - R)∆H. Situations in
which R is as large as 0.8-0.9 are outlined in ref 65,

Table 5. Established Relations between the (Natural) log of the Inhibition Constant and the Calculated Binding Indexes for Each of
the Parametrization Schemes from Table 4a

best relationship rms relationship in ∆H and T∆S rms

A ln K ) 7.07 + 0.18∆H - 2.42T∆S 0.78 ln K ) 7.07 + 0.18∆H - 2.42T∆S 0.78
B ln K ) 4.47 + 3.26∆H - 3.19∆H* - 3.33T∆S 1.01 ln K ) 5.54 + 0.10∆H - 2.04T∆S 1.12
C ln K ) 4.31 + 4.76∆H - 4.68∆H* - 4.18T∆S 0.95 ln K ) 5.19 + 0.10∆H - 2.35T∆S 1.30

a The BEST relations are the ones found by stepwise regression, retaining only the variables that are relevant for the model. Alternative
equations only in ∆H and T∆S are also shown. The cross-validated rms values refer to the calculated vs experimental values of ln K.

Table 6. Check of Whether the Binding Entropy Index as
Evaluated by (20) Can Be Written as a Linear Combination of
∆H and ∆H*a

model
established relationship
T∆S ) a∆H - a*∆H* r2 (CV)

A T∆S ) 1.39∆H - 1.37∆H* 0.516
B T∆S ) 1.25∆H - 1.24∆H* 0.553
C T∆S ) 1.41∆H - 1.40∆H* 0.582

a A, B, and C refer to the different parametrization schemes
listed in Table 4.

Figure 2. Covariance of the two different binding entropy
indexes applied in the present study: T∆S on the x-axis vs
(∆H - ∆H*) on the y-axis (in kcal/mol) as resulting from
parametrization scheme C (see Table 4).

Table 7. Correlation Coefficients r2 between the Sets of
Binding Indexes ∆H and T∆S Obtained with the Three
Different Parametrizations Listed in Table 4a

∆H T∆S

B C B C

A 0.52 0.92 0.37 0.31
B 1.00 0.78 1.00 0.27

a These r2 values result from linear regression calculations with
fixed unitary slope and null intercept (y ) x).
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and therefore, the 10-fold reduced weighting coefficient
of ∆H could be explained within this hypothesis.
While thermodynamic studies of the binding of TR

inhibitors are not known to us, microcalorimetric mea-
sures of the binding enthalpies for glutathione and
analogs to GR4 show that these are as low as -25 kcal/
mol and need to be compensated by a very unfavorable
binding entropy contribution in order to reach the ≈-4
kcal/mol of binding free enthalpy. The predicted ligand-
TR binding enthalpies in the present study are well
within this order of magnitude.
4. Predictive Power of the Model. i. The Gen-

eral Applicability of the Docking Model. In con-
trast to QSAR models, which mostly apply to a series
of related compounds, this approach works in principle
with any compound of mass between 200 and 500 g/mol.
While calibrated on the basis of polyamino ligands, it
was able to predict well the affinity of a different species
such as crystal violet 44, which has been input as a
single geometry obtained by MOPAC-AM166 minimiza-
tion (its delocalized electron system cannot be described
by the CVFF force field).
ii. Validity of the Models. According to the results

in Table 8 and the plots of predicted vs. experimental
affinities in Figure 3, the calibrated models were in most
cases able to predict the correct order of magnitude of
the inhibition constants of a wide variety of compounds.
The RMS errors in the prediction of the binding free
enthalpy are about 0.6-0.8 kcal/mol, a quite satisfactory
result corresponding to the error range of the much
more elaborated relative free energy calculations (FEP).27

The r2 values reported in Table 8 are given by

where y is the explained variable (i.e. ln K). For
molecules in the learning set, the calculated values ycalc
are obtained from the cross-validated regression. For
all the other molecules, ycalc is the predicted affinity.
Model A has been calibrated within a too narrow

structural subspace and did not work for compounds of
higher flexibility. The extension of the learning set led
to the improved model B. The slight improvement of
model C with respect to B is probably not due to the
enlarged learning set, but to a better convergence of the
optimization. Notably compound 34, which was an
outlier of model B, could not be better predicted after
entering the learning set of model C. A prolonged
search after adding the outliers of C to the learning set
failed to find a better parametrization. The ligand 43,
which is still larger than any one of the latter entries

in the learning set, has been well predicted by both
models B and C.
The size of the learning set may appear somehow

small compared to the number of 5 docking + 4 affinity
parameters (out of which only 7 are used in model A).

Table 8. Predictive Power of the Obtained Modelsa

all ligands
ligands with well-
predicted affinities ligands in learning set

model rms r2 no. rms r2 no. rms r2 outliers

A 1.29 0.18 38 0.81 0.58 23 0.67 0.79 30, 34, 39, 41, 42, 43
B 1.17 0.32 42 0.99 0.46 26 0.90 0.62 30, 34
C 1.12 0.38 41 0.85 0.62 29 0.87 0.69 20, 28, 34
D* 1.12 0.38 41 0.85 0.62 31 1.17 0.40 20, 28, 34

a “All ligands” refers to the full set of molecules shown in Table 1. Separate statistics are shown for the subsets of well-predicted
compounds (for which the predicted affinity constants had the correct order of magnitude, e.g.∆ln K < 2) and for the learning set molecules.
no., number of compounds in that subset; rms, root-mean-squared error between predicted and experimental ln K values; r2, the
corresponding correlation coefficents according to (22). Entry D represents a further trial to refine the parameters by adding the outliers
of model C to the learning set. Despite extensive MC search, no better parameter set has been found.

r2 ) 1 - ∑(yi
calc - yi

exp)2

∑(yi
exp - 〈yi

exp〉)2
(22)

Figure 3. Plots of predicted vs experimental logs of inhibition
constants for each set of parameters A, B, and C (Table 4).
The molecules used in the learning set are plotted with filled
squares while the other are shown as triangles. The dotted
lines y ) x - 2 and y ) x + 2 are delimiting the “mispredicted”
from the “well predicted” compounds for which the calculated
inhibition constants has the correct order of magnitude.
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A recent example67 uses 51 complexes to fit 12 weighting
factors. However, the size of the complete validation
set (learning set + testing set), on hand of which the
performance of the models is monitored, is of 44
compounds. The fact that part of the affinities included
in the statistics were predicted for compounds that were
not used for calibration should strengthen the confi-
dence in the quality of the model.
The sometimes low r2 values obtained for the whole

set of molecules are partly due to the limited variance
of the available experimental data. An extended range
of affinity data offers much more confidence67,68 (better
r2 values) in the obtained linear relations, at even higher
RMS deviations than reported in this work. The dif-
ference between “strong” vs “weak” TR inhibitors is of
less than 3 orders of magnitude, so that model,67 with
a reported RMS error of 1.14 units of log K, would
hardly discriminate between them. Our approach has
been proven able to do so, but the fact that the
regression equations work well within the narrow
affinity range used for calibration is not a guarantee
for their applicability outside this range.
To our knowledge, no TR ligands with inhibition

constants lower than 1 µM have been described in
literature. The validation of our model outside the
already addressed affinity range would therefore imply
its generalization to other enzymatic systems. However,
some of the introduced simplifications and notably the
rigid site hypothesis on which this approach heavily
relies are not of general validity. New terms, such as
the entropy loss due to side chain rotation hindering,69
may be required in order to properly describe other
enzymatic systems. The application of the model to the
highly homologous GR/GSSG system may be straight-
forward, but would not provide the desired extension
of the available affinity rangesthe best GSSG-competi-
tive GR ligands are micromolar70 inhibitors as well.
5. Structural Information from the Docking

Computations. The comparison of the predicted bind-
ing modes of mepacrine (compound 8) with the recently
determined X-ray structure of its TR complex71 revealed
that our docking approach is able to qualitatively
reproduce the binding modes of this ligand. Figure 4

shows that, within 2 kcal/mol from the lowest energy
level, two main binding modes were found by the
docking approach.
Binding mode 1 is in good qualitative agreement with

the X-ray result which places the aromatic moiety of
mepacrine in the hydrophobic pocket defined by the
residues W21, M103, and Y110, with the chlorine atom
on the side of the W21. Most of the residues that are
shown to participate at the binding in the X-ray
structure can be found within 5 Å around the docked
mepacrine molecules. However, the individual atom-
to-atom contacts in the X-ray structure are not quan-
titatively respected. The charged amino group appears
closer (<5 Å) to the glutamates 466′ and 467′, whereas
in the X-ray structure a water-mediated interaction with
E18 can be seen (in the docked geometry the distance
between these groups is 8 Å).
Binding mode 2 comprises an alternative hydrophobic

pocket, defined by Phe 396′, Thr 463′, Pro 462′, Val 58,
Val 52, Leu 399′, Ile 339, and Ile 106 (not shown in
Figure 4). The ammonium group appears to interact
with E18. The energy levels corresponding to binding
mode 2 are close to the best energies of binding mode
1, while the first binding mode is more populated, which
suggests an entropic advantage with respect to the
second. Such an explanation should nevertheless be
considered with extreme caution.
6. New TR Inhibitors from Virtual Screening of

Molecular Data Bases. Amolecular data base of 2500
compounds has been screened by this algorithm in order
to discover new TR inhibitors. UNIX csh-scripts control
the procedure, calling the 2D-to-3D conversion program,
the energy minimization program Discover,47 and the
docking program. The former and the latter programs
are written in FORTRAN 77-Ratfor for Silicon Graphics.
The generation of the conformer families required

about 2 weeks on two Silicon Graphics workstations
(R4000/100 MHz and R3000/33 MHz). The docking of
the 2500 molecules took 96 h on a R4400/175 MHz
workstation. It is interesting to note that the use of
faster docking approaches in “reciprocal space”72,73 could
accelerate this last step. However, since the bottleneck
of this procedure is the conformational sampling step,
the time savings resulting from the use of such a
technique would be irrelevant.
A “hit list” of 13 molecules (Figure 5) has been

selected and submitted to the testing.63 The obtained
results are shown in Table 9. It can be seen that 9 out
of the 13 molecules caused a measurable inhibition of
TR activity, at concentrations of 57 µM and lower.
These are inhibitors of comparable potency to other
molecules that were synthesized and published.
Most of the hits show the typical features of TR

inhibitors, e.g. the presence of aromatic groups and of
(poly)amino chains. Somehow different due to its
heterocyclic aromatic moiety and the morpholine group,
compound 9 matches nevertheless this typical TR-
inhibitor pattern. The virtual screening procedure is
able to recognize this pattern in a data base of highly
diverse structures. This is a positive result that vali-
dates our calibration procedure. However, much faster
techniques like neural networks74 may perform this
pattern recognition task on the basis of the molecular
topology only. Our procedure, implying a time-consum-
ing conformational analysis, should be therefore able
to (a) distinguish between actives and nonactiveswithin

Figure 4. Predicted binding mode of mepacrine (compound
8) in the TR site, obtained with the parametrization C from
Table 4. The conformations within 2 kcal/mol with respect to
the best minima (drawn in bold lines) are shown. CPK spheres
have been drawn around the atoms of the site that are within
5 Å from the inhibitor molecule in its lowest energy conforma-
tion of binding mode 1. Specific TR residues are shown in
“stick” representation.
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the subset of molecules that match this pattern; this
has been confirmed both by the calibration and test
phase and by the high success rate of its predictions,
and (b) discover new structural motifs that provide TR-
inhibiting properties.
Molecules 2 and 7 are indeed qualitatively different,

their novelty consisting in the absence of a flexible side
chain carrying the ammonium group, which is included
in a condensed ring system. Molecule 2 may represent
a promising lead of a new series of related compounds.
Quite analogous compounds have been reported in
literature75 to have trypanocidal activity, without how-
ever evidencing their action mechanism. Interestingly,
molecule 8, which has been predicted to be only slightly
less active than 2, had no measurable inhibitory potency
under the given conditions. While we do not yet have
an explanation for this, it is likely that the presence of
the methylene bridge between the tricyclic system and
the phenyl ring in A allows the latter to orient so as to
minimize the sterical crowding around the ammonium
group.

IV. Conclusions

The virtual screening approach reported here is based
upon various approximations and hypotheses introduced
in order to quantify the binding properties of ligands
by means of calculated indexes. These indexes cor-
respond to the virtual binding enthalpy and entropy of
the ligand, according to the defined energy functions and
sampling criteria. They have been shown to be useful,
explaining variables of the logs of the inhibition con-
stants.
Fittable parameters weighting the importance of the

different interactions in the model were calibrated with
respect to measured affinities of known ligands. While
the optimal values of the parameters governing the
site-ligand interactions have been found to be in
agreement with expectations, the weighting factors of
the enthalpic and entropic contributions to the affinity
constant behave like empirical QSAR coefficients.
The algorithm was able to explain the affinities of 44

chemically different ligands and to detect new inhibi-
tors. An interesting polycyclic molecule (2, Figure 5)
could be related to a series of trypanocidal compounds
that have not yet been tested with respect to TR-
inhibiting properties. While none of the detected com-
pounds are strong TR inhibitors of direct pharmaceu-
tical interest, the latter structure may represent the
lead of a new series of ligands.
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Table 9. Predicted Inhibition Constants and the Measured
Percentages of Inhibition for the 13 “Hits” Obtained with the
Parameter Set A of Table 4a

inhibition percentage
no. 57 µM 28.5 µM 5.7 µM

predicted
Ki (µM)

1 36 9 0 14
2 27 13 0 7
3 7 0 0 14
4 31 0 0 12
5 25 0 0 5
6 0 0 0 15
7 18 9 0 14
8 0 0 0 2
9 0 0 0 5
10 0 0 0 5
11 12 16 18 14
12 23 15 10 85
13 40 30 0 3
ref 70‚‚‚80 50‚‚‚60 7(exp)
a Numbering (no.) is according to Figure 5. Percentages of

inhibition are given as (r0 - rinh)/r0 × 100%, where r0 and rinh are
the reduction rates of trypanothione disulfide by TR, in absence
and in presence of inhibitor at the given concentrations. In
parallel, the working reagents and solutions are tested against
the reference inhibitor clomipramine “Ref.” (A in Figure 1, Kref )
7 µM).

Search for Trypanothione Reductase Inhibitors Journal of Medicinal Chemistry, 1997, Vol. 40, No. 15 2421



Pasteur de Lille), Eric Buisine (Molecular Modeling,
Institut Pasteur de Lille), Mircea Diudea (Chemistry
Department, University of Cluj/Romania) for encour-
agements and helpful discussions. Steven Brooks (In-
stitut Pasteur de Lille) is acknowledged for carefully
proofreading the manuscript.

References
(1) De Castro, S. L. The challenge of Chagas’ disease chemo-

therapy: an update of drugs assayed against Trypanosoma
Cruzi. Acta Trop. 1993, 53, 83-98.

(2) Etah, E. A. O; Smith, K.; Fairlamb, A. H. Trypanothione
detoxication systems in trypanosomatids, Spring Meeting of the
British Society for Parasitology, London, 1993.

(3) Cotgreave, I. A.; Moldeus, P.; Orrenius, S. Host biochemical
defense mechanisms against oxidants. Annu. Rev. Pharmacol.
Toxicol. 1988, 28, 189-212.

(4) Janes, W.; Schulz, G. E. Role of the charged groups of glutathione
reductase in the catalysis of glutathione reductase: crystal-
lographic and kinetic studies with synthetic analogues. Bio-
chemistry 1990, 29, 4022-4030.

(5) Jockers-Scheruebl, M. C.; Schirmer, R. H.; Krauth-Siegel, R. L.
Trypanothione Reductase from Trypanosoma Cruzi, catalytic
properties of the enzyme and inhibition studies with trypano-
cidal compounds. Eur. J. Biochem. 1989, 180, 267-272.

(6) Pai, E. F.; Schulz, G. E. The catalytic mechanism of glutathione
reductase as derived from X-ray diffraction analyses of reaction
intermediates. J. Biol. Chem. 1983, 258, 1752-1757.

(7) Karplus, P. A.; Schulz, G. E. Refined structure of glutathione
reductase at 1.54 Å resolution. J. Mol. Biol. 1987, 195, 701-
729.

(8) Karplus, P. A.; Schulz, G. E. Substrate binding and catalysis by
glutathione reductase as derived from refined enzyme-substrate
crystal structures at 2 Å resolution. J. Mol. Biol. 1989, 210, 163-
180.

(9) Kuriyan, J.; Kong, X.-P.; Krishna, T. S. R.; Sweet, R. M.;
Murgolo, N. J.; Field, H.; Cerami, A.; Henderson, G. B. X-ray
structure of trypanothione reductase from Crithidia fasciculata
at 2.4 Å resolution. Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 8764-
8768.

(10) Hunter, W. N.; Bailey, S.; Habash, J.; Harrop, S. J.; Helliwell,
J. R.; Aboagye-Kwarteng, T.; Smith, K.; Fairlamb, A. H. Active
site of trypanothione reductase, a target for rational drug design
J. Mol. Biol. 1992, 227, 322-333.

(11) Bailey, S.; Smith, K.; Fairlamb, A. H.; Hunter, W. N. Substrate
interactions between trypanothione reductase and N1-glutathio-
nylspermidine disulfide at 0.28 nm resolution. Eur. J. Biochem.
1993, 213, 67-75.

(12) Benson, T. J.; McKie, J. H.; Garforth, J.; Borges, A.; Fairlamb,
A. H.; Douglas, K.T. Rationally designed selective inhibitors of
trypanothione reductase; phenothiazines and related tricyclics
as lead structures. Biochem. J. 1992, 286, 9-11.

(13) Bruns, R. F.; Simmons, R. M. A.; Howbert, J. J.; Waters, D. C.;
Threlkeld, P. C.; Gitter, B. D. Virtual screening as a tool for
evaluating chemical libraries lecture at Exploiting Molecular
Diversity - Small Molecule Libraries For Drug Discovery, Jan.
23-25, 1995, La Jolla, CA.

(14) Smelie, A. S.; Crippen, G. M.; Richards, W. G. Fast drug-receptor
mapping by site-directed distances. A novel method of predicting
new pharmacological leads. J. Chem. Inf. Comput. Sci. 1991,
31, 386-392.

(15) Martin, Y. C. 3D database searching in drug design. J. Med.
Chem. 1992, 35, 2145-2154.

(16) Eisen, M. B.; Wiley, D. C.; Karplus, M.; Hubbard, R. E. HOOK:
a program for finding new molecular architectures that satisfy
the chemical and steric requirements of a macromolecule binding
site. Proteins 1994, 19, 199-221.

(17) Bohacek, R. S.; McMartin, C. Multiple highly diverse structures
complementary to enzyme binding sites: results of extensive
application of a de novo design method incorporating combina-
torial growth. J. Am. Chem. Soc. 1994, 116, 5560-5571.

(18) Boehm, H. J. The computer program LUDI: a new simple
method for the de novo ligand design. J. Comput.-Aided Mol.
Des. 1992, 6, 61-78.

(19) Gillet, V.; Johnson, A. P.; Mata, P.; Sike, S.; Williams, P.
SPROUT: A program for structure generation. J. Comput. Aided
Mol. Des. 1993, 7, 123-157.

(20) Oprea, T. I.; Waller, C. L.; Marshall, G. R. Three-dimensional
quantitative structure-activity relationship of human immuno-
deficiency virus(I) protease inhibitors. 2. Predictive power using
limited exploration of alternate binding modes. J. Med. Chem.
1994, 37, 2206-2215.

(21) Sternberg, M. J.; King, R. D.; Lewis, R. A.; Muggelton, S.
Application of machine learning to structural molecular biology.
Philos. Trans. R. Soc. London B: Biol. Sci. 1994, 344, 365-371.

(22) Benigni, R.; Cotta-Ramusion, M.; Giorgi, F.; Gallo, C. Molecular
similarity matrices and quantitative structure-activity relation-
ships: a case study with methodological implications. J. Med.
Chem. 1995, 38, 629-635.

(23) Hocart, S. J.; Reddy, W.; Murphy, W. A.; Coy, D. H. Three-
dimensional quantitative structure-activity relationships of so-
matostatin analogues. 1. Comparative molecular field analysis
of growth hormone release-inhibiting potencies. J. Med. Chem.
1995, 38, 1974-1989.

(24) Diudea, M. V.; Ivanciuc, O. Molecular Topology (in Romanian),
Comprex Editions; Cluj-Napoca: Romania, 1995.

(25) Ortiz, A. R.; Pisabarro, M. T.; Gago, F.; Wade, R. C. Prediction
of drug binding affinities by comparative binding energy analy-
sis. J. Med. Chem. 1995, 38, 2681-2691.

(26) Hansch, C.Drug design; Ariens, E. J., Ed.; Academic Press: New
York, 1971; Vol. 16, p 271.

(27) van Gunsteren, W. F. Methods for calculation of free energies
and binding constants. Successes and problems. In Computer
Simulations of Biomolecular Systems; van Gunsteren, W. F.,
Wiener, S. ESCOM: Leiden, 1989; pp 27-59.

(28) Struthers, R. S.; Rivier, J.; Hagler, A. T. Design of peptide
analogs: Theoretical simulation of conformation, energetics and
dynamics. In Conformationally Directed Drug Design; Peptides
and Nucleic Acids as Templates or Targets; Vida, J. A., Gordon,
M., Eds.; American Chemical Society: Washington, DC, 1984;
pp 239-261.

(29) McQuarie, D. A. Statistical Mechanics; Harper Collins Publish-
ers: New York, 1976.

(30) Mezei, M.; Beveridge, D. Free energy simulations Ann. N.Y.
Acad. Sci. 1986, 482, 1-23.

(31) Mezei, M. The finite difference thermodynamic integration,
tested on calculating the hydration free energy difference
between acetone and dimethylamine in water. J. Chem. Phys,
1987, 86, 7084-7088.

(32) Hodel, A.; Rice, L. M.; Simonson, T.; Fox, R. O.; Brunger, A. T.
Proline cis-trans isomerization in staphylococcal nuclease: multi-
substrate free energy perturbation calculations. Protein Sci.
1995, 4, 636-654.

(33) Stouten, P. F. W.; Froemmel, C.; Nakamura, H.; Sander, C. An
effective solvation term based on atomic occupancies for use in
protein simulations. Mol. Simul. 1993, 10, 97-120.

(34) Luty, B. A.; Zacharias, M.; Wasserman, Z. R.; Stouten, P. F. W.;
Hodge, C. N.; McCammon, J. A. A molecular mechanics/grid
method for evaluation of ligand-receptor interactions J. Comput.
Chem. 1995, 16, 454-464.

(35) Baillet, S.; Buisine, E.; Horvath, D.; Maes, L.; Bonnet, B.;
Sergheraert, C. 2-Aminodiphenylsulphides as inhibitors of try-
panothione reductase. Bioorg. Med. Chem. 1996, 4, 891-899.

(36) Vajda, S.; Weng, Z.; Rosenfeld, R.; DeLisi, C. Effect of Confor-
mational Flexibility and Solvation on Receptor-Ligand Binding
Free Energies. Biochemistry 1994, 33, 13977-13988.

(37) Moutiez, M.; Lucas, V.; Davioud, E.; Tartar, A.; Sergheraert, C.
Indolylmaleimide derivatives: synthesis and biological activities
as new potential Trypanothione Reductase inhibitors; The IVth
congress of COST-ACRIVAL antiparasitic chemotherapy; Grena-
da, Spain, June 5-6, 1995.

(38) Moutiez, M. Ph.D. Thesis, University of Lille II, France, 1995.
(39) Krauth-Siegel, R. L.; Lohrer, H.; Buecheler, U. S.; Schirmer, R.

H. In Biochemical Protozoology; Coombe, G. H., North, M. J.,
Eds.; Taylor and Francis: London, 1991.

(40) Gomez, R. F.; Moutiez, M.; Aumercier, M.; Bethegnies, G.;
Luyckx, M.; Ouaissi, A.; Tartar, A.; Sergheraert, C. 2-Amino-
diphenylsulphides as new inhibitors of trypanothione reductase.
Int. J. Antimicrob. Agents 1995, 6, 111-118.

(41) Ponasik, J. A.; Strickland, C.; Faerman, C.; Savvides, S.; Karplus,
P. A.; Ganem, B.; Kukoamine A and other hydrophobic acyl-
polyamines: potent and selective inhibitors of Crithidia fascicu-
lata trypanothione reductase. Biochem. J. 1995, 311, 371-375.

(42) Girault, S.; Baillet, S.; Lucas, V.; Davioud, E.; Tartar, A.;
Sergheraert, C. Bis - Aminodiphenylsulphides as potent inhibi-
tors of the TR from T. Cruzi; poster at the 5th European COST
Conference on Antiparasitic Chemotherapy; Heidelberg, May
23-24, 1996.

(43) Moreno, S. N. J.; Carnieri, E. G. S.; Docampo, R. Inhibition of
Trypanosoma cruzy trypanothione reductase by crystal violet.
Mol. Biochem. Parasitol. 1994, 67, 313-320.

(44) Howard, A. E.; Kollman, P. A. An analysis of current methodolo-
gies for conformational search of complex molecules. J. Med.
Chem. 1988, 31, 1669-1675.

(45) Leach, A. R. An algorithm to identify a molecule’s most different
conformations. J. Chem. Inf. Comput. Sci. 1994, 34, 661-670.

(46) Leach, A. R.; Prout, K.; Dolata, D. P. The application of artificial
intelligence to the conformational analysis of strained molecules.
J. Comput. Chem. 1990, 11, 680-693.

(47) Discover 2.9.0/3.1.0 User Guide, Jan. 1993, BIOSYM Technolo-
gies (Molecular Simulations Inc.), San Diego, CA.

(48) Smellie, A.; Teig, S. L.; Towbin, P. Poling: promoting confor-
mational variation. J. Comput. Chem. 1995, 16, 171-187.

(49) Ermer, O. Calculation of molecular properties using force fields.
Applications in organic chemistry. Struct. Bonding 1976, 27,
161-211.

(50) Hagler, A. T.; Lifson, S.; Dauber, P. Consistent force field studies
of intermolecular forces in hydrogen bonded crystals. II. A
benchmark for the objective comparison of alternative force
fields. J. Am. Chem. Soc. 1979, 101, 5122-5130.

2422 Journal of Medicinal Chemistry, 1997, Vol. 40, No. 15 Horvath



(51) Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; Vetterling, W.
T. Numerical Recipes: The Art of Scientific Computing; Cam-
bridge University Press: Cambridge, 1986.

(52) Albert, A.; Serjeant, E. P. Ionization Constants of Acids &
Bases: Butler & Tanner: London, 1962.

(53) Protein Data Bank; Chemistry Department, Brookhaven Na-
tional Laboratory, Upton NY 11973.

(54) Gilson, M. K.; Honig, B. The inclusion of electrostatic hydration
energies in molecular mechanics calculations. J. Comput.-Aided
Mol. Des. 1991, 5, 5-20.

(55) Still, W. C.; Tempczyk, A.; Hawley, R. C.; Hendrickson, T.
Semianalytical treatment of solvation for molecular mechanics
and dynamics. J. Am. Chem. Soc. 1990, 112, 6127-6129.

(56) Eisenberg, D.; McLahan, A. D. Solvation energy in protein
folding and binding. Nature 1986, 319, 199-203.

(57) Mehler, E. L.; Eichele, G. Electrostatic effects in water-accessible
regions of proteins. Biochemistry 1984, 23, 3887-3891.

(58) Jackson, J. D. Classical Electrodynamics; J. Wiley & Sons: New
York, 1975.

(59) Horvath, D.; van Belle, D.; Lippens, G. Development and
parametrization of continuum solvent models. II. An unified
approach to the solvation problem. J. Chem.Phys. 1996, 105,
4197-4210.

(60) Brooks, C. L. III; Karplus, M.; Montgomery-Pettitt, B. Proteins:
A theoretical Perspective of Dynamics, Structure and Thermo-
dynamics; Advances in Chemical Physics vol. LXXI; John Wiley
& Sons: New York, 1988.

(61) Brooks, C. L. III. Thermodynamics of ionic solvation: Monte
Carlo simulation of aqueous chloride and bromide ions. J. Phys.
Chem. 1986, 90, 6680-6684.

(62) ACD, Available Chemicals Directory, Copyright 1995, MDL
Information Systems Inc., San Leandro, CA.

(63) Aumercier, M.; Meziane-Cherif, D.; Moutiez, M.; Tartar, A.;
Sergheraert, C. A microplate assay to screen trypanothione
reductase inhibitors. Anal. Biochem. 1994, 223, 161-164.

(64) Horvath, D.; van Belle, D.; Lippens, G.; Wodak, S. J. Develop-
ment and parametrization of continuum solvent models. I.
Models based on the boundary element method. J. Chem. Phys.
1996, 104, 6679-6695.

(65) Searle, M. S.; Williams, D. H.; Gerhard, U. Partitioning of Free
Energy Contributions in the Estimation of Binding Constants:
Residual Motions and Consequences for Amide-Amine Hydrogen
Bond Strengths. J. Am. Chem. Soc. 1992, 114, 10697-10704.

(66) Stewart, J. J. P. MOPAC: a semiempirical molecular orbital
program. J. Comput.-Aided Mol. Des. 1990, 4, 1-105.

(67) Head, R. D.; Smythe, M. L.; Oprea, T. I.; Waller, C. L.; Green,
S. M.; Marshall, G. R. VALIDATE: A New Method for the
Receptor-Based Prediction of Binding Affinities of Novel Ligands.
J. Am. Chem. Soc. 1996, 118, 3959-3969.

(68) Boehm, H. J. The development of a simple empirical scoring
function to estimate the binding constant for a protein-ligand
complex of known three-dimensional structure. J. Comput.-
Aided Mol. Des. 1994, 8, 243-256.

(69) Pickett, S. E.; Sternberg, M. E. Empirical scale of conformational
entropy in protein folding. J. Mol. Biol. 1993, 231, 2674-2684.

(70) Zoellner, H.Handbook of Enzyme Inhibitors, Part A; VCH Verlag
GmbH: Weinheim, 1993.

(71) Jacoby, E. M.; Schlichting, I.; Lantwin, C. B.; Kabsch, W.;
Krauth-Siegel, R. L. Crystal structure of the Trypanosoma Cruzi
trypanothione reductase-mepacrine complex. Proteins 1996, 24,
73-80.

(72) Katchalski-Katzir, E.; Shariv, I.; Eisenstein, M.; Friesem, A. A.;
Aflalo, C.; Vakser, I. A. Molecular surface recognition: deter-
mination of geometric fit between proteins and their ligands by
correlation techniques. Proc. Natl. Acad. Sci. U.S.A. 1992, 89,
2195-2199.

(73) Harrison, R. W.; Kourinov, I. V.; Andrews, L. C. The Fourier-
Green’s function and the rapid evaluation of molecular poten-
tials. Protein Eng. 1994, 7, 359-369.

(74) So, S. S.; Karplus, M. Evolutionary optimization in quantitative
structure-activity relationship: an application of neural net-
works. J. Med. Chem. 1996, 39, 1521-1530.

(75) Cavin, J. C.; Krassner, S. M.; Rodriguez, E. Plant-derived
alkaloids active against Trypanosoma Cruzi. J. Ethnopharmacol.
1987, 19, 89.

JM9603781

Search for Trypanothione Reductase Inhibitors Journal of Medicinal Chemistry, 1997, Vol. 40, No. 15 2423


